Wednesday, November 16, 2022
Multi-Label Chest X-Ray Classification - CheXpert Data
Imports¶
### Imports
import pandas as pd
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import datetime
from pathlib import Path
import gc
import warnings
warnings.filterwarnings("ignore")
import sys
import time
####
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
####
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch import optim
import torchvision.transforms as transforms
import torchvision
##
from fastprogress import master_bar, progress_bar
from PIL import Image
gc.collect()
0
print(time.strftime("%H:%M:%S",time.localtime()))
22:15:11
Load the Data and Paths¶
path='/home/ubuntu/input/'
out='/home/ubuntu/models/'
chestxrays_root = Path(path)
data_path = chestxrays_root
####
full_train_df = pd.read_csv(path+'CheXpert-v1.0-small/train.csv')
full_valid_df = pd.read_csv(path+'CheXpert-v1.0-small/valid.csv')
full_train_df['patient'] = full_train_df.Path.str.split('/',3,True)[2]
full_train_df ['study'] = full_train_df.Path.str.split('/',4,True)[3]
full_valid_df['patient'] = full_valid_df.Path.str.split('/',3,True)[2]
full_valid_df ['study'] = full_valid_df.Path.str.split('/',4,True)[3]
print("Train Data : ",len(full_train_df))
full_train_df.head()
Train Data : 223414
Path | Sex | Age | Frontal/Lateral | AP/PA | No Finding | Enlarged Cardiomediastinum | Cardiomegaly | Lung Opacity | Lung Lesion | ... | Consolidation | Pneumonia | Atelectasis | Pneumothorax | Pleural Effusion | Pleural Other | Fracture | Support Devices | patient | study | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | CheXpert-v1.0-small/train/patient00001/study1/... | Female | 68 | Frontal | AP | 1.0 | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | 1.0 | patient00001 | study1 |
1 | CheXpert-v1.0-small/train/patient00002/study2/... | Female | 87 | Frontal | AP | NaN | NaN | -1.0 | 1.0 | NaN | ... | -1.0 | NaN | -1.0 | NaN | -1.0 | NaN | 1.0 | NaN | patient00002 | study2 |
2 | CheXpert-v1.0-small/train/patient00002/study1/... | Female | 83 | Frontal | AP | NaN | NaN | NaN | 1.0 | NaN | ... | -1.0 | NaN | NaN | NaN | NaN | NaN | 1.0 | NaN | patient00002 | study1 |
3 | CheXpert-v1.0-small/train/patient00002/study1/... | Female | 83 | Lateral | NaN | NaN | NaN | NaN | 1.0 | NaN | ... | -1.0 | NaN | NaN | NaN | NaN | NaN | 1.0 | NaN | patient00002 | study1 |
4 | CheXpert-v1.0-small/train/patient00003/study1/... | Male | 41 | Frontal | AP | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | NaN | patient00003 | study1 |
5 rows × 21 columns
cols = ['No Finding', 'Enlarged Cardiomediastinum', 'Cardiomegaly',
'Lung Opacity', 'Lung Lesion', 'Edema', 'Consolidation', 'Pneumonia',
'Atelectasis', 'Pneumothorax', 'Pleural Effusion', 'Pleural Other',
'Fracture', 'Support Devices']
data_df = []
for i in cols:
minusOneVal = sum(np.where(full_train_df[i] == -1,1,0))
oneVal = sum(np.where(full_train_df[i] == 1,1,0))
zeroVal = sum(np.where(full_train_df[i] == 0,1,0))
#nanVal = sum(np.where(full_train_df[i] == np.NaN ,1,0))
nanVal = full_train_df[i].isnull().sum()
data_df.append([i,minusOneVal,oneVal,zeroVal,nanVal])
data_df = pd.DataFrame(data_df)
data_df.columns = ['Label','minusOneVal','oneVal','zeroVal','nanVal']
data_df
Label | minusOneVal | oneVal | zeroVal | nanVal | |
---|---|---|---|---|---|
0 | No Finding | 0 | 22381 | 0 | 201033 |
1 | Enlarged Cardiomediastinum | 12403 | 10798 | 21638 | 178575 |
2 | Cardiomegaly | 8087 | 27000 | 11116 | 177211 |
3 | Lung Opacity | 5598 | 105581 | 6599 | 105636 |
4 | Lung Lesion | 1488 | 9186 | 1270 | 211470 |
5 | Edema | 12984 | 52246 | 20726 | 137458 |
6 | Consolidation | 27742 | 14783 | 28097 | 152792 |
7 | Pneumonia | 18770 | 6039 | 2799 | 195806 |
8 | Atelectasis | 33739 | 33376 | 1328 | 154971 |
9 | Pneumothorax | 3145 | 19448 | 56341 | 144480 |
10 | Pleural Effusion | 11628 | 86187 | 35396 | 90203 |
11 | Pleural Other | 2653 | 3523 | 316 | 216922 |
12 | Fracture | 642 | 9040 | 2512 | 211220 |
13 | Support Devices | 1079 | 116001 | 6137 | 100197 |
Plot input Data¶
plt.figure(figsize=(40,10))
Label = data_df['Label']
nanVal = data_df['nanVal']
minusOneVal = data_df['minusOneVal']
zeroVal = data_df['zeroVal']
oneVal = data_df['oneVal']
ind = [x for x, _ in enumerate(Label)]
plt.bar(Label, oneVal, width=0.5, label='oneVal', color='green', bottom=zeroVal+minusOneVal+nanVal)
plt.bar(Label, zeroVal, width=0.5, label='zeroVal', color='yellow', bottom=minusOneVal+nanVal)
plt.bar(Label, minusOneVal, width=0.5, label='minusOneVal', color='brown',bottom=nanVal)
plt.bar(Label, nanVal, width=0.5, label='nanVal', color='blue')
plt.yticks(fontsize=20,fontweight='bold')
plt.xticks(ind, Label,fontsize=24,fontweight='bold',rotation=90)
plt.ylabel("Frequency",fontsize=35,fontweight='bold')
plt.xlabel("Labels",fontsize=35,fontweight='bold')
plt.legend(bbox_to_anchor=(1.005, 1),fontsize=25)
#plt.legend(bbox_to_anchor=(1.005, 1))
plt.title("Distribution of Labels",fontsize=40, fontweight='bold')
plt.show()
Handling Uncertainities - U_one and U_zero¶
Since this model is used as a first pass for chest x-ray diagnosis, false negative has higher cost and all uncertainties were consdiered as positive (replaced -1 by 1)
u_one_features = ['Atelectasis', 'Edema']
u_zero_features = ['Cardiomegaly', 'Consolidation', 'Pleural Effusion']
full_train_df['Cardiomegaly'] = full_train_df['Cardiomegaly'].replace(-1,0)
full_train_df['Consolidation'] = full_train_df['Consolidation'].replace(-1,0)
full_train_df['Pleural Effusion'] = full_train_df['Pleural Effusion'].replace(-1,0)
full_train_df['Atelectasis'] = full_train_df['Atelectasis'].replace(-1,1)
full_train_df['Edema'] = full_train_df['Edema'].replace(-1,1)
full_train_df = full_train_df.replace(-1,np.nan)
full_train_df.head()
Path | Sex | Age | Frontal/Lateral | AP/PA | No Finding | Enlarged Cardiomediastinum | Cardiomegaly | Lung Opacity | Lung Lesion | ... | Consolidation | Pneumonia | Atelectasis | Pneumothorax | Pleural Effusion | Pleural Other | Fracture | Support Devices | patient | study | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | CheXpert-v1.0-small/train/patient00001/study1/... | Female | 68 | Frontal | AP | 1.0 | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | 1.0 | patient00001 | study1 |
1 | CheXpert-v1.0-small/train/patient00002/study2/... | Female | 87 | Frontal | AP | NaN | NaN | 0.0 | 1.0 | NaN | ... | 0.0 | NaN | 1.0 | NaN | 0.0 | NaN | 1.0 | NaN | patient00002 | study2 |
2 | CheXpert-v1.0-small/train/patient00002/study1/... | Female | 83 | Frontal | AP | NaN | NaN | NaN | 1.0 | NaN | ... | 0.0 | NaN | NaN | NaN | NaN | NaN | 1.0 | NaN | patient00002 | study1 |
3 | CheXpert-v1.0-small/train/patient00002/study1/... | Female | 83 | Lateral | NaN | NaN | NaN | NaN | 1.0 | NaN | ... | 0.0 | NaN | NaN | NaN | NaN | NaN | 1.0 | NaN | patient00002 | study1 |
4 | CheXpert-v1.0-small/train/patient00003/study1/... | Male | 41 | Frontal | AP | NaN | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | NaN | patient00003 | study1 |
5 rows × 21 columns
Get Sample Data - Only to Run Test¶
TEST_FLAG = 'N'
if TEST_FLAG == 'Y':
sample_perc = 0.01
unique_patients = full_train_df.patient.unique()
mask = np.random.rand(len(unique_patients)) <= sample_perc
sample_patients = unique_patients[mask]
full_train_df = full_train_df[full_train_df.patient.isin(sample_patients)]
full_train_df = full_train_df.drop(['patient', 'study'],axis=1)
print(full_train_df.Path.size)
223414
Get Labels¶
LABELS = full_train_df.columns[5:]
LABELS
Index(['No Finding', 'Enlarged Cardiomediastinum', 'Cardiomegaly', 'Lung Opacity', 'Lung Lesion', 'Edema', 'Consolidation', 'Pneumonia', 'Atelectasis', 'Pneumothorax', 'Pleural Effusion', 'Pleural Other', 'Fracture', 'Support Devices'], dtype='object')
Split Test & Train¶
train_data, val_data = train_test_split(full_train_df, test_size=0.20, random_state=2021)
del full_train_df
del full_valid_df
gc.collect()
print(train_data.Path.size)
print(val_data.Path.size)
178731 44683
Define Models¶
- Custom Net
- Densenet121
- Resnet50 - Freeze first 6 layers
- Inception_V3 - Freeze first 8 layers
- Vgg16 - Freeze first 6 layers
Custom Model CNN¶
class CustomNet(nn.Module):
def __init__(self, num_classes=14, is_trained=False):
super().__init__()
self.ConvLayer1 = nn.Sequential(
nn.Conv2d(3, 8, 3), # inp (3, 512, 512)
nn.Conv2d(8, 16, 3),
nn.MaxPool2d(2),
nn.ReLU() # op (16, 256, 256)
)
self.ConvLayer2 = nn.Sequential(
nn.Conv2d(16, 32, 5), # inp (16, 256, 256)
nn.Conv2d(32, 32, 3),
nn.MaxPool2d(4),
nn.ReLU() # op (32, 64, 64)
)
self.ConvLayer3 = nn.Sequential(
nn.Conv2d(32, 64, 3), # inp (32, 64, 64)
nn.Conv2d(64, 64, 5),
nn.MaxPool2d(2),
nn.ReLU() # op (64, 32, 32)
)
self.ConvLayer4 = nn.Sequential(
nn.Conv2d(64, 128, 5), # inp (64, 32, 32)
nn.Conv2d(128, 128, 3),
nn.MaxPool2d(2),
nn.ReLU() # op (128, 16, 16)
)
#self.Lin1 = nn.Linear(15488, 15)
self.Lin1 = nn.Sequential(nn.Linear(512, 14), nn.Sigmoid())
def forward(self, x):
x = self.ConvLayer1(x)
x = self.ConvLayer2(x)
x = self.ConvLayer3(x)
x = self.ConvLayer4(x)
x = x.view(x.size(0), -1)
#print(x.size())
x = self.Lin1(x)
return x
Pre Trained Models¶
"""
Init model architecture
Parameters
----------
num_classes: int
number of classes
is_trained: bool
whether using pretrained model from ImageNet or not
"""
####################################################################################
### DenseNet121
####################################################################################
#
class DenseNet121(nn.Module):
def __init__(self, num_classes=14, is_trained=False):
super().__init__()
self.net = torchvision.models.densenet121(pretrained=is_trained)
# Get the input dimension of last layer
kernel_count = self.net.classifier.in_features
self.net.classifier = nn.Sequential(nn.Linear(kernel_count, num_classes), nn.Sigmoid())
def forward(self, inputs):
"""
Forward the netword with the inputs
"""
return self.net(inputs)
####################################################################################
### ResNet50
####################################################################################
#
class ResNet50(nn.Module):
def __init__(self, num_classes=14, is_trained=False):
super().__init__()
self.net = torchvision.models.resnet50(pretrained=is_trained)
# Get the input dimension of last layer
#kernel_count = self.net.classifier.in_features
## Freeze first 8 layers
ct = 0
for child in self.net.children():
ct += 1
if ct < 9:
for param in child.parameters():
param.requires_grad = False
# Replace last layer with new layer that have num_classes nodes, after that apply Sigmoid to the output
self.net.fc = nn.Sequential(
nn.Linear(2048, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 14),nn.Sigmoid())
def forward(self, inputs):
"""
Forward the netword with the inputs
"""
return self.net(inputs)
####################################################################################
### INCEPTION
####################################################################################
#
class Inception(nn.Module):
def __init__(self, num_classes=14, is_trained=False):
super().__init__()
self.net = torchvision.models.inception_v3(pretrained=is_trained,aux_logits = False)
# Get the input dimension of last layer
#kernel_count = self.net.classifier.in_features
# Replace last layer with new layer that have num_classes nodes, after that apply Sigmoid to the output
#self.net.classifier = nn.Sequential(nn.Linear(kernel_count, num_classes), nn.Sigmoid())
## Freeze first 20 layers
ct = 0
for child in self.net.children():
ct += 1
if ct < 21:
for param in child.parameters():
param.requires_grad = False
self.net.fc = nn.Sequential(nn.Linear(self.net.fc.in_features, num_classes), nn.Sigmoid())
def forward(self, inputs):
"""
Forward the netword with the inputs
"""
return self.net(inputs)
####################################################################################
### VGG16
####################################################################################
#
class Vgg16(nn.Module):
def __init__(self, num_classes=14, is_trained=False):
super().__init__()
self.net = torchvision.models.vgg16(pretrained=is_trained)
#for param in self.net.features.parameters():
# param.require_grad = False
## Freeze first 6 layers
ct = 0
for child in self.net.children():
ct += 1
if ct < 7:
for param in child.parameters():
param.requires_grad = False
# Newly created modules have require_grad=True by default
num_features = self.net.classifier[6].in_features
features = list(self.net.classifier.children())[:-1] # Remove last layer
features.extend([nn.Linear(num_features, num_classes)]) # Add our layer with 4 outputs
self.net.classifier = nn.Sequential(*features, nn.Sigmoid()) # Replace the model classifier
def forward(self, inputs):
"""
Forward the netword with the inputs
"""
return self.net(inputs)
Create Dataset¶
class ChestXrayDataset(Dataset):
def __init__(self, folder_dir, dataframe, image_size, normalization):
"""
Init Dataset
Parameters
----------
folder_dir: str
folder contains all images
dataframe: pandas.DataFrame
dataframe contains all information of images
image_size: int
image size to rescale
normalization: bool
whether applying normalization with mean and std from ImageNet or not
"""
self.image_paths = [] # List of image paths
self.image_labels = [] # List of image labels
# Define list of image transformations
image_transformation = [
transforms.Resize((image_size, image_size)),
transforms.ToTensor()
]
self.image_transformation = transforms.Compose(image_transformation)
# Get all image paths and image labels from dataframe
for index, row in dataframe.iterrows():
image_path = os.path.join(folder_dir, row.Path)
self.image_paths.append(image_path)
if len(row) < 14:
labels = [0] * 14
else:
labels = []
for col in row[5:]:
if col == 1:
labels.append(1)
else:
labels.append(0)
self.image_labels.append(labels)
def __len__(self):
return len(self.image_paths)
def __getitem__(self, index):
"""
Read image at index and convert to torch Tensor
"""
# Read image
image_path = self.image_paths[index]
image_data = Image.open(image_path).convert("RGB") # Convert image to RGB channels
# TODO: Image augmentation code would be placed here
# Resize and convert image to torch tensor
image_data = self.image_transformation(image_data)
return image_data, torch.FloatTensor(self.image_labels[index])
Training Parameters¶
IMAGE_SIZE = 224 # Image size (224x224)
BATCH_SIZE = 96
LEARNING_RATE = 0.001
LEARNING_RATE_SCHEDULE_FACTOR = 0.1 # Parameter used for reducing learning rate
LEARNING_RATE_SCHEDULE_PATIENCE = 5 # Parameter used for reducing learning rate
MAX_EPOCHS = 30 ##100 # Maximum number of training epochs
Training Data¶
Train Loader¶
my_data_path = path
train_dataset = ChestXrayDataset(my_data_path, train_data, IMAGE_SIZE, True)
#train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
for data, label in train_dataloader:
print(data.size())
print(label.size())
break
torch.Size([96, 3, 224, 224]) torch.Size([96, 14])
Validation Loader¶
val_dataset = ChestXrayDataset(my_data_path, val_data, IMAGE_SIZE, True)
#val_dataloader = DataLoader(dataset=val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
val_dataloader = DataLoader(dataset=val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
del train_data
del val_data
del train_dataset
del val_dataset
gc.collect()
20
Set Device¶
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.cuda.empty_cache()
device
'cuda'
def multi_label_auroc(y_gt, y_pred):
""" Calculate AUROC for each class
Parameters
----------
y_gt: torch.Tensor
groundtruth
y_pred: torch.Tensor
prediction
Returns
-------
list
F1 of each class
"""
auroc = []
gt_np = y_gt.to("cpu").numpy()
pred_np = y_pred.to("cpu").numpy()
assert gt_np.shape == pred_np.shape, "y_gt and y_pred should have the same size"
for i in range(gt_np.shape[1]):
try:
auroc.append(roc_auc_score(gt_np[:, i], pred_np[:, i]))
except ValueError:
pass
return auroc
def multi_label_accuracy(y_gt, y_pred):
""" Calculate AUROC for each class
Parameters
----------
y_gt: torch.Tensor
groundtruth
y_pred: torch.Tensor
prediction
Returns
-------
list
F1 of each class
"""
acc = []
gt_np = y_gt.to("cpu").numpy()
pred_np = y_pred.to("cpu").numpy()
assert gt_np.shape == pred_np.shape, "y_gt and y_pred should have the same size"
for i in range(gt_np.shape[1]):
acc.append(accuracy_score(gt_np[:, i], np.where(pred_np[:, i]>=0.5,1,0)))
return acc
def multi_label_f1(y_gt, y_pred):
""" Calculate f1 for each class
Parameters
----------
y_gt: torch.Tensor
groundtruth
y_pred: torch.Tensor
prediction
Returns
-------
list
F1 of each class
"""
f1_out = []
gt_np = y_gt.to("cpu").numpy()
pred_np = y_pred.to("cpu").numpy()
assert gt_np.shape == pred_np.shape, "y_gt and y_pred should have the same size"
for i in range(gt_np.shape[1]):
f1_out.append(f1_score(gt_np[:, i], np.where(pred_np[:, i]>=0.5,1,0)))
return f1_out
def multi_label_precision_recall(y_gt, y_pred):
""" Calculate precision for each class
Parameters
----------
y_gt: torch.Tensor
groundtruth
y_pred: torch.Tensor
prediction
Returns
-------
list
precision of each class
"""
precision_out = []
recall_out = []
gt_np = y_gt.to("cpu").numpy()
pred_np = y_pred.to("cpu").numpy()
assert gt_np.shape == pred_np.shape, "y_gt and y_pred should have the same size"
for i in range(gt_np.shape[1]):
p = precision_recall_fscore_support(gt_np[:, i], np.where(pred_np[:, i]>=0.5,1,0),average='binary')
precision_out.append(p[0])
recall_out.append(p[1])
return precision_out,recall_out
Training Function
def epoch_training(epoch, model, train_dataloader, device, loss_criteria, optimizer, mb):
"""
Epoch training
Paramteters
-----------
epoch: int
epoch number
model: torch Module
model to train
train_dataloader: Dataset
data loader for training
device: str
"cpu" or "cuda"
loss_criteria: loss function
loss function used for training
optimizer: torch optimizer
optimizer used for training
mb: master bar of fastprogress
progress to log
Returns
-------
float
training loss
"""
# Switch model to training mode
model.train()
training_loss = 0 # Storing sum of training losses
# For each batch
for batch, (images, labels) in enumerate(progress_bar(train_dataloader, parent=mb)):
# Move X, Y to device (GPU)
images = images.to(device)
labels = labels.to(device)
# Clear previous gradient
optimizer.zero_grad()
# Feed forward the model
pred = model(images)
#pred = torch.LongTensor(pred)
loss = loss_criteria(pred, labels)
#print("loss is ",loss)
# Back propagation
loss.backward()
# Update parameters
optimizer.step()
# Update training loss after each batch
training_loss += loss.item()
#mb.child.comment = f'Training loss {training_loss/(batch+1)}'
del images, labels, loss
if torch.cuda.is_available(): torch.cuda.empty_cache()
# return training loss
return training_loss/len(train_dataloader)
Evaluating Function
def evaluating(epoch, model, val_loader, device, loss_criteria, mb):
"""
Validate model on validation dataset
Parameters
----------
epoch: int
epoch number
model: torch Module
model used for validation
val_loader: Dataset
data loader of validation set
device: str
"cuda" or "cpu"
loss_criteria: loss function
loss function used for training
mb: master bar of fastprogress
progress to log
Returns
-------
float
loss on validation set
float
metric score on validation set
"""
# Switch model to evaluation mode
model.eval()
val_loss = 0 # Total loss of model on validation set
out_pred = torch.FloatTensor().to(device) # Tensor stores prediction values
out_gt = torch.FloatTensor().to(device) # Tensor stores groundtruth values
with torch.no_grad(): # Turn off gradient
# For each batch
for step, (images, labels) in enumerate(progress_bar(val_loader, parent=mb)):
# Move images, labels to device (GPU)
images = images.to(device)
labels = labels.to(device)
# Update groundtruth values
out_gt = torch.cat((out_gt, labels), 0)
# Feed forward the model
ps = model(images)
loss = loss_criteria(ps, labels)
# Update prediction values
out_pred = torch.cat((out_pred, ps), 0)
# Update validation loss after each batch
val_loss += loss
#mb.child.comment = f'Validation loss {val_loss/(step+1)}'
# Clear memory
del images, labels, loss
if torch.cuda.is_available(): torch.cuda.empty_cache()
# return validation loss, and metric score
val_loss_mean = val_loss/len(val_loader)
auroc_mean = np.nanmean(np.array(multi_label_auroc(out_gt, out_pred)))
acc_mean = np.nanmean(np.array(multi_label_accuracy(out_gt, out_pred)))
f1_mean = np.nanmean(np.array(multi_label_f1(out_gt, out_pred)))
return val_loss_mean,auroc_mean,acc_mean,f1_mean
Define Optimizer
def get_opt(modeltxt,model):
if modeltxt == "DenseNet121":
return optim.Adam(model.parameters(), lr=LEARNING_RATE, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-5)
if modeltxt == "ResNet50":
return optim.Adam(model.parameters())
if modeltxt == "Vgg16":
return optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
if modeltxt == "CustomNet":
return optim.Adam(model.parameters())
if modeltxt == "Inception":
params_to_update = []
for name,param in model.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
return optim.SGD(params_to_update, lr=0.001, momentum=0.9)
Train Model¶
def trainModel(modelname,loss_criteria,modeltxt):
model = modelname(num_classes=len(LABELS),is_trained=True).to(device)
optimizer = get_opt(modeltxt,model)
# Learning rate will be reduced automatically during training
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor = LEARNING_RATE_SCHEDULE_FACTOR,
patience = LEARNING_RATE_SCHEDULE_PATIENCE, mode = 'max', verbose=True)
best_score = 0
best_score_acc = 0
best_score_f1 = 0
model_path = out+modeltxt+".pth"
out_path = out+modeltxt+"_running.csv"
training_losses = []
validation_losses = []
validation_score = []
validation_acc = []
validation_f1 = []
# Config progress bar
mb = master_bar(range(MAX_EPOCHS))
mb.names = ['Train loss', 'Val loss', 'AUROC', 'Accuracy', 'f1 score']
x = []
nonimproved_epoch = 0
start_time = time.time()
cnt = 1
# Training each epoch
for epoch in mb:
#break
mb.main_bar.comment = f'Best AUROC score: {best_score}'
x.append(epoch)
# Training
train_loss = epoch_training(epoch, model, train_dataloader, device, loss_criteria, optimizer, mb)
mb.write('Finish training epoch {} with loss {:.4f}'.format(epoch, train_loss))
training_losses.append(train_loss)
# Evaluating
val_loss, new_score, new_score_acc, new_score_f1 = evaluating(epoch, model, val_dataloader, device, loss_criteria, mb)
validation_losses.append(val_loss)
validation_score.append(new_score)
validation_acc.append(new_score_acc)
validation_f1.append(new_score_f1)
gc.collect()
# Update learning rate
lr_scheduler.step(new_score)
# Update training chart
mb.update_graph([[x, training_losses], [x, validation_losses], [x, validation_score] , [x, validation_acc] ,
[x, validation_f1]],
[0,epoch+1+round(epoch*0.3)], [0,1])
diff = np.round(time.time() - start_time)
pd.DataFrame([[epoch,modeltxt,best_score,new_score,diff]]).to_csv(out_path,index=False,mode='a',header=False)
# Save model
t2 = 4
if modeltxt == 'DenseNet121':
t2 = 6
if best_score < new_score:
#mb.write(f"Improve AUROC from {best_score} to {new_score}")
best_score = new_score
best_score_acc = new_score_acc
best_score_f1 = new_score_f1
nonimproved_epoch = 0
best_model = model
torch.save({"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"best_score": best_score,
"epoch": epoch,
"lr_scheduler": lr_scheduler.state_dict()}, model_path)
else:
nonimproved_epoch += 1
if nonimproved_epoch > 5:
break
print("Early stopping")
if time.time() - start_time > 3600*t2:
break
print("Out of time")
return best_score,best_score_acc,best_score_f1,best_model
Set Models to Train¶
model_list = [CustomNet,DenseNet121,ResNet50,Inception,Vgg16]
mName_list = ['CustomNet','DenseNet121','ResNet50','Inception','Vgg16']
#model_list = [DenseNet121]
#mName_list = ['DenseNet121']
Train Models in a Loop¶
eval_df_train = []
for m in model_list:
mName = m().__class__.__name__
print("Processing Model ",mName)
globals()[f"best_score_{mName}"],globals()[f"best_score_acc_{mName}"],globals()[f"best_score_f1_{mName}"],globals()[f"best_model_{mName}"] = trainModel(modelname=m,loss_criteria=nn.BCELoss(),modeltxt=mName)
#
eval_df_train.append([mName,globals()[f"best_score_{mName}"],globals()[f"best_score_acc_{mName}"],globals()[f"best_score_f1_{mName}"]])
Processing Model CustomNet
Finish training epoch 1 with loss 0.3335
Finish training epoch 2 with loss 0.3265
Finish training epoch 3 with loss 0.3218
Finish training epoch 4 with loss 0.3186
Finish training epoch 5 with loss 0.3160
Finish training epoch 6 with loss 0.3143
Finish training epoch 7 with loss 0.3127
Finish training epoch 8 with loss 0.3115
Finish training epoch 9 with loss 0.3105
Finish training epoch 10 with loss 0.3093
Finish training epoch 11 with loss 0.3083
Finish training epoch 12 with loss 0.3074
Finish training epoch 13 with loss 0.3066
Finish training epoch 14 with loss 0.3057
Finish training epoch 15 with loss 0.3048
Finish training epoch 16 with loss 0.3040
Finish training epoch 17 with loss 0.3032
Finish training epoch 18 with loss 0.3023
Finish training epoch 19 with loss 0.3012
Finish training epoch 20 with loss 0.3005
Finish training epoch 21 with loss 0.2995
Epoch 22: reducing learning rate of group 0 to 1.0000e-04. Processing Model DenseNet121
Finish training epoch 1 with loss 0.3002
Finish training epoch 2 with loss 0.2959
Finish training epoch 3 with loss 0.2928
Finish training epoch 4 with loss 0.2905
Finish training epoch 5 with loss 0.2889
Finish training epoch 6 with loss 0.2872
Finish training epoch 7 with loss 0.2860
Finish training epoch 8 with loss 0.2848
Finish training epoch 9 with loss 0.2837
Finish training epoch 10 with loss 0.2829
Finish training epoch 11 with loss 0.2820
Processing Model ResNet50
Finish training epoch 1 with loss 0.3371
Finish training epoch 2 with loss 0.3350
Finish training epoch 3 with loss 0.3336
Finish training epoch 4 with loss 0.3322
Finish training epoch 5 with loss 0.3313
Finish training epoch 6 with loss 0.3302
Finish training epoch 7 with loss 0.3298
Finish training epoch 8 with loss 0.3293
Finish training epoch 9 with loss 0.3287
Finish training epoch 10 with loss 0.3282
Finish training epoch 11 with loss 0.3277
Finish training epoch 12 with loss 0.3275
Finish training epoch 13 with loss 0.3270
Finish training epoch 14 with loss 0.3266
Finish training epoch 15 with loss 0.3262
Finish training epoch 16 with loss 0.3260
Finish training epoch 17 with loss 0.3256
Finish training epoch 18 with loss 0.3253
Finish training epoch 19 with loss 0.3251
Finish training epoch 20 with loss 0.3248
Finish training epoch 21 with loss 0.3247
Finish training epoch 22 with loss 0.3245
Processing Model Inception
Finish training epoch 1 with loss 0.3684
Finish training epoch 2 with loss 0.3642
Finish training epoch 3 with loss 0.3617
Finish training epoch 4 with loss 0.3597
Finish training epoch 5 with loss 0.3585
Finish training epoch 6 with loss 0.3575
Finish training epoch 7 with loss 0.3567
Finish training epoch 8 with loss 0.3561
Finish training epoch 9 with loss 0.3556
Finish training epoch 10 with loss 0.3550
Finish training epoch 11 with loss 0.3546
Finish training epoch 12 with loss 0.3543
Finish training epoch 13 with loss 0.3541
Finish training epoch 14 with loss 0.3538
Finish training epoch 15 with loss 0.3535
Finish training epoch 16 with loss 0.3534
Finish training epoch 17 with loss 0.3531
Finish training epoch 18 with loss 0.3530
Finish training epoch 19 with loss 0.3529
Finish training epoch 20 with loss 0.3527
Finish training epoch 21 with loss 0.3526
Finish training epoch 22 with loss 0.3525
Finish training epoch 23 with loss 0.3524
Finish training epoch 24 with loss 0.3522
Finish training epoch 25 with loss 0.3522
Finish training epoch 26 with loss 0.3520
Processing Model Vgg16
Finish training epoch 1 with loss 0.3550
Finish training epoch 2 with loss 0.3531
Finish training epoch 3 with loss 0.3521
Finish training epoch 4 with loss 0.3513
Finish training epoch 5 with loss 0.3507
Finish training epoch 6 with loss 0.3502
Finish training epoch 7 with loss 0.3498
Finish training epoch 8 with loss 0.3497
Finish training epoch 9 with loss 0.3494
Finish training epoch 10 with loss 0.3493
Finish training epoch 11 with loss 0.3490
Finish training epoch 12 with loss 0.3490
Finish training epoch 13 with loss 0.3489