Matplotlib provide a MATLAB like plotting framework.
Here is an example of bar charts using Matplotlib.
Zillow rent index data used for plotting.
Zillow Rent Index (ZRI) track the monthly median rent in particular geographical regions.
Zillow Rent Index data at City, State and Country level.
Here is an example of bar charts using Matplotlib.
Zillow rent index data used for plotting.
Zillow Rent Index (ZRI) track the monthly median rent in particular geographical regions.
Source Data
Zillow Rent Index data at City, State and Country level.
http://files.zillowstatic.com/research/public/City/City_Zri_AllHomesPlusMultifamily_Summary.csv
http://files.zillowstatic.com/research/public/County/County_Zri_AllHomesPlusMultifamily_Summary.csv
http://files.zillowstatic.com/research/public/State/State_Zri_AllHomesPlusMultifamily_Summary.csv
http://files.zillowstatic.com/research/public/County/County_Zri_AllHomesPlusMultifamily_Summary.csv
http://files.zillowstatic.com/research/public/State/State_Zri_AllHomesPlusMultifamily_Summary.csv
Source Code
import pandas as pd
import io
import requests
########## Read City level CSV and Filter specific City ( Belmont for example)
##
citydata=pd.read_csv('City_Zri_AllHomesPlusMultifamily_Summary.csv')
citydata=citydata[['State','RegionName','Zri','YoY']].where((citydata['RegionName'] == 'Belmont') & (citydata['State'] == 'CA') ).dropna()
citydata=citydata.reset_index()
citydata=citydata[['RegionName','Zri','YoY']]
##
########## Read County level CSV and Filter specific City ( SanMateo for example)
##
countydata=pd.read_csv('County_Zri_AllHomesPlusMultifamily_Summary.csv')
countydata=countydata[['State','RegionName','Zri','YoY']].where((countydata['RegionName'] == 'San Mateo')).dropna()
countydata=countydata.reset_index()
countydata=countydata[['RegionName','Zri','YoY']]
##
########## Read State level CSV and Filter specific City ( California for example)
##
statedata=pd.read_csv('State_Zri_AllHomesPlusMultifamily_Summary.csv')
statedata=statedata[['RegionName','Zri','YoY']].where((statedata['RegionName'] == 'California')).dropna()
statedata=statedata.reset_index()
statedata=statedata[['RegionName','Zri','YoY']]
##########
usadata=pd.read_csv('State_Zri_AllHomesPlusMultifamily_Summary.csv')
usadata=usadata[['RegionName','Zri','YoY']].where((usadata['RegionName'] == 'United States')).dropna()
usadata=usadata.reset_index()
usadata=usadata[['RegionName','Zri','YoY']]
##########
##
########## Combine City, County, State and National level data
##
zriData=pd.concat([usadata,statedata,countydata,citydata])
zri=zriData['Zri']
##
########## Plot
##
%matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
Regions = ('United States', 'California', 'San Mateo County', 'Belmont City')
colors = ['grey','grey','grey','red']
y_pos = np.arange(len(Regions))
fig, ax = plt.subplots()
ax.bar(y_pos, zri,edgecolor='grey',width=0.8,alpha=0.4,color=colors)
plt.xticks(y_pos, Regions)
rects = ax.patches
labels = [i for i in zri]
for rect, label in zip(rects, labels):
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2, height + 5, label, ha='center', va='bottom',weight='bold')
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
plt.title('Zillow Value Index Comparison on City, County, State and County Levels')
plt.xlabel('Regions',weight='bold')
No comments:
Post a Comment